
International Journal of  Theoretical Physics, Vol. 32, No. 6, 1993 

Spherically Symmetric Perfect Fluid Solutions of 
Einstein's Equations in Noncomoving Coordinates 
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Almost all known spherically symmetric perfect fluid solutions of Einstein's 
equations have been obtained in comoving coordinates and nearly all are shear- 
free. In this paper we study two solutions in noncomoving coordinates and show 
that they contain shear. 

1. I NTRODUCTION 

The most common method of solving Einstein's equations for perfect 
fluids is to use eomoving coordinates. In the case of  spherical symmetry, 
with which we are concerned in this paper, the method is very successful 
for pressure-free matter (dust) for which the general solution was found by 
Tolman (1934). For matter with pressure, however, the solutions obtained 
by the comoving method are almost exclusively free of shear (Kramer et 

al., 1980). It would be very interesting to know more about the effect of 
shear on relativistic fluid flow. 

A pioneering paper on perfect fluid metrics in noncomoving coordinates 
was that of McVittie and Wiltshire (1977). They found several classes of 
metrics in these coordinates, but did not investigate their physical behavior, 
and in particular did not ascertain whether they have shear. Another work 
in which noncomoving coordinates were used was that of Biech and Das 
(1990), who found two shearing solutions, one contained among McVittie 
and Wiltshire's, and one not. Biech and Das also give a good summary of 
the few spherically symmetric flows with pressure which are shearing. Other 
recent work on shearing flows is that of Collins (1991), Herrera et  al. (1991), 
and Kitamura (1989). 
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In  this paper  we take two of  McVittie and Wiltshire's solutions and 
study them in detail, proving that they have shear. We are able to show 
that the space-times contain regions in which the fluid satisfies physical ly 
reasonable  energy condit ions.  

The plan o f  the pape r  is as follows. In  Section 2 we give the field 
equat ions in a form suitable for noncomov ing  coordinates,  and define the 
kinematical  fluid parameters  we shall use. The two exact solutions are 
studied in Sections 3 and 4, and there is a Conclusion.  

2. F I E L D  E Q U A T I O N S  

In this section we fol low closely McVittie and Wiltshire. We start with 
a general spherically symmetr ic  t ime-dependent  metric in the form 

d s  2 = _ e  2.* d~ 2 -  r 2 d~'~2 q- e 2a d~7 2 
(2.1) 

d['~ 2:= d02+s in  2 0 dq52 

where /x, A, and r are funct ions o f  s e and ~7 only, and we number  the 
coordinates  as follows: 

X 1 : ~ ,  X 2 : 0 ,  X 3 : ~b, x 4 : 3 7 

(2.2) 
- o c  < so< oo , 0_< 0_< 7r, 0-< qS-< 27r, - o c <  ~7 <oo  

The field equat ions are 

1 i i G~ := Ri~ - 5 6 k R  = -8~zT k (2.3) 

The energy tensor  for a perfect  fluid is 

rik -- ( p + p )u 'uk  -- t$~k p (2:4) 

p and p are the proper  density and pressure,  respectively, and u ~ is the unit 
four-veloci ty satisfying 

g i k u i u  k = 1 (2.5) 

Substituting the componen t s  gik o f  the metric (2.1) into the left-hand 
side o f  (2.3), we find 

= = C 2 :  = 0 

so from (2.4), u2 = u3 = 0 and the nonvanishing  components  o f  T~ are 

Tll = (p + p ) u l u l -  p 

T 2  2 3 (2.6) = T3 = - p  
4 T4 = (p + p ) u 4 u 4 - p  

T~ = - e  2(A ")T~ = (p + p ) u l u 4  (2.7) 
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By means  of  (2.5) we can el iminate  p, p, and  the velocity c o m p o n e n t s  
f rom (2.6) and  (2.7), obta in ing  

2A 4 2 2/x 2 1 2 T~)( T 2 -  T 4) = 0 e (T1) + e  ( T 2 -  (2.8) 

and  so, using (2.3), we get 

2A 4 2 2/x 2 l 2 e ( G , )  + e  ( G 2 - G , ) ( G 2 - G 4 4 ) = O  (2.9) 

This is the only field equation i f  we allow noncomoving coordinates. The 
comoving  solut ions for  the metr ic  (2.1) are those  solving (2.9) by 

O41 = 0, G1 = O~ (2.10) 

which lead to u I =  0. In  this pape r  we shall suppose  

u l ~ d o  (2.11) 

We can obta in  p, p, and  u i in terms of  T~ f rom (2.6): 

4 2 2 p = T I +  r 4 -  r2 ,  p = - r  2 (2.12) 

T 2 -  T1 
e2 (ul)2 - ( T I  - T 2) + ( T  4 - T2 ( 2 . 1 3 )  

4 T 4 -  T 2 
e2a(u4) 2 - (2.14) 

( r ~ -  2 4 T2) + ( T 4 -  T22) 

We shall take the sign of  u 4 to be  positive, and the sign of  u ~ is then ob ta ined  
f rom (2.7). 

Of  course,  every flow of  a s ing le -component  perfect  fluid can be 
expressed  in comoving  coordinates  ( though there will be singularit ies where  
s t reamlines  intersect),  so it is possible,  at least in principle,  to write our  
solut ions in comoving  coordinates .  Our  mot ive  here is to consider  flows 
which are easier  to obta in  and  s tudy in n o n c o m o v i n g  coordinates .  However ,  
we shall have  occas ion to cons ider  the t rans format ions  to comoving  coordin-  
ates x i'. In  space- t imes with metr ic  (2.1) this is achieved by  writing x 2 '= x 2, 
x 3 '= x 3, and  finding x v, x 4' such that  

l '  Oxl' ON4' 4 0 (2.15) 
u -Ox-- Tu~+Ox---- s  = 

gl'4' Oxl' Ox4' -2~ Oxl' OX4' e-2a = 
= Ox ~ Ox I e -~ Ox 4 0 x  4 0 (2.16) 

We are especial ly  interested in flows with shear.  The shear  tensor  crik 
is given by  

Orik = U(i;k)- 171(iUk)--�89 (2.17) 
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where the accelerat ion fii is 

and 

Bonnor and Knutsen 

fii = ui;ju ~ (2.18) 

hik = gik - -  U i l ~ l k  

Parentheses denote  symmetrizat ion,  e.g., 

1 u U~i;k~ = ~( i;k + Uk;j) 

We shall also need the expans ion  scalar 

0 = uli (2.19) 

In the next  two sections we study two metrics representing the shearing 
flow of  a perfect  fluid in noncomoving  coordinates.  

3. METRIC A 

We present  this in the form given by Ray (1978) 

ds  2 = - -  e 2 ( " + n ) ( d ~ : 2  + dg~ 2 - d~? 2) (3.1) 

where ol = o~(() and to satisfy (2.9) we require 

6 a " -  2(c~')2 + 3 = 0 (3.2) 

where a pr ime means d / d E .  This metric is a special case o f  (9.15) in McVittie 
and Wiltshire (1977). 

The physical quantities for (3.1) are found by calculating T~ from 
(2.3) and then using (2.12)-(2.14), taking into account  (2.7): 

87rp = l e  -2~ + ")(509 - 6) (3.3) 

8rtp = e - 2 ~  + ~)(5 - 3co) (3.4) 

u I = - 2 e - ( ~ + n ) o : ' X  -1/2, u 4 = 3 e - ~ + ~ ) X  -1/2 (3.5) 

where X : =  ( 9 - 4 w ) ,  and w := (o~')2; here and th roughout  the paper  the 
positive square root  is to be taken. For  the solut ion to represent  a fluid and 
to have physical  significance we require 

X > 0 ,  p > 0 ,  p > - O ,  p - p > - O  (3.6) 

These condi t ions are satisfied if 

6/5 -< w -< 3 /2  (3.7) 

so there exists a region of  space-time in which the solution is physical  
provided 60 lies in this range: 
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The general  solution o f  (3.2) is 

e -~/3 = A cosh X + B sinh X, X = ~/x/-6 (3.8) 

where A, B are arbitrary constants.  In  the special case A = + B  this reduces 
to 

a = e(3/2)1/2~+ k, e = +1 (3.9) 

where k is a constant.  This gives 

to = 3/2  

cor responding  to a stiff fluid with an equat ion o f  state p = p. 
I f  B 2 >  A 2, we find f rom (3.8) that to > 3/2,  so (3.7) cannot  be satisfied. 

I f  A 2 >  B 2, we can write (3.8) as 

e -~ /3=  C cosh(x  +/3) (3.10) 

where C,/3 are new constants  replacing A, B. F rom this we obtain 

to = 3 tanh2(x +/3)  

so (3.7) requires 

4 < tanh2(x +/3) < 1 

which is satisfied for all ~ in two disjoint ranges o f  X such that 

x > - q l  and x<-q2 ( q l >  q2) 

where q~, q2 depend  on /3 .  Thus the condi t ion (3.7) is fulfilled over part  of  
the range -oo  < ~ < ec, but  not  the whole range. It is further clear f rom (3.3) 
and (3.4) that  p and p are infinite when r / =  - c o  and also when e -2~ = +oc. 
We find f rom (3.10) 

e-2 ,~ = C 6 cosh6(x +/3)  

Hence  a singularity in p and p occurs at ~ = 4-00. These values o f  ~ also 
cor respond  to the centers o f  spherical symmetry  because,  as we see f rom 
(3.1), the surface area o f  a 2-sphere with coordinate  radius ~ =  • is 
permanent ly  zero. The model  has a finite, two-centered spherical geometry,  
but  P and  p are infinite at the centers. There is no equat ion of  state o f  the 
form p = f ( p ) .  
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The kinematical quantities for the perfect fluid flow represented by 
metric A, obtained by evaluating (2.17)-(2.19), are 

fii = ( - 9 a  ' X  -2, O, O, - 6 w X  -2) 

0 = 6e-~+n)(2w - 3)(2o) - 5)X -3/2 

0-. = 18e(~+.)(2w - 3)X-5/2  

o-14 = 12e (~+ ' ) a ' (2o~-3 )X -5/z 

0"44 : 8 e(~+v)w (2o3 -- 3)X-5/2 

0"22 = 0"33 cosec 2 0 =-e(~+~)(2o3 - 3 ) X  -3/2 

The shear invariant is given by 

O'ab0- ab = 6e-2(~+,)(2 w _ 3)2X -3 

Regarding these kinematical quantities, we note the following: 
(i) The acceleration/ii is nonzero, thus showing that metric A represents 

a solution different from those of Biech and Das (1990), which have fi; = 0. 
Our/ i ;  is independent of  time. 

(ii) Excluding the special case o3 =3,  we see that the expansion is 
positive in the physical range (3.7). 

(iii) The shear is nonzero if o3 # 3. 
(iv) The case co = 3 has zero expansion and shear; in fact it is static, 

as we shall shortly show. 
Let us consider the solution A in comoving coordinates. Taking first 

the special case (3.9), we find that the transformation 

log R = ~/+ le x//6 ~ + k ,  t = x /3  r /+ ~ x /2  ~ 

satisfies (2.15) and (2.16) and takes (3.1) into 

ds2= - 2 d R 2 -  R 2 df~2 + R 2 dt 2 

which is static. It represents a static sphere of  stiff fluid, but the pressure 
and density are infinite at R = 0. This solution is in fact contained in a class 
of  solutions given by Ibafiez and Sanz (1982). 

In the case of  (3.8), taking e ~/3 in the form (3.10), we find that the 
transformation to comoving diagonal coordinates [i.e., coordinates satisfy- 
ing (2.15) and (2.16)] is 

r = r / - 3  log sinh(x + 13) 

t = rl - 2 log cosh(x + 13) 

However, attempts to invert these formulas and to write the metric (3.1) in 
terms of r and t lead to extremely cumbersome expressions and it becomes 
clear why this solution has not been discovered in comoving coordinates. 
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4. METRIC B 

This is 

ds 2 = Z4/3  drl2_ z2/3(d~2 q_ ~2 df~2) ( 4 . I )  

where z = a ~ 2 - I  - b~/ and a, b are constants. The numbering and ranges of 
coordinates are as in (2.2), except that here 0_< ~ < oe. It was given by 
McVittie and Wiltshire (1977) in a slightly different notation. Calculating 
r~  from (2.3) and using (2.12)-(2.14) and (2.7), we find 

87rp = ~z-S/3(7b2 z 2/3 71,_ 16az + 20abr/) 

877"/9 = 12 8/3(3 bzz -2/3 - 56az + 20abrl) 

ul=2,~y-1/2, u4=_ba- l z -2 /3y  1/2 

where Y:= b2a-2-4sC2z 2/3 and, as usual, the positive square root is to be 
taken. For the metric (4.1) to represent a realistic perfect fluid, we require 

Y > 0 ,  p > 0 ,  p>-O, p-p>-O (4.2) 

One finds that these conditions can be satisfied in the neighborhood of ~ = 0 
if a <0 ,  b > 0, and ~ is suitably chosen. Thus there exists a region of 
space-time in which the solution is physically reasonable. 

The kinematical quantities of the fluid flow represented by metric B 
are as follows: 

(t i = (_462a-2~22/3 g-2 ,  O, O, - 8 b a - l ~ 2 z  4/3 g-2) 

0 = ( a - l z  -4/3 W q -  12) y-1/2_ 4(3a)-l~2z-2/3 W y - 3 / 2  

f i l l  = 8 b 2 ( 9 a 3 ) - l ~  2 WY-5/2  

O'14 = 16b(9a2)-lCz2/3 Wy-s/2 

0"44  = 32(9a)-l~4z 4/3 W y  - 5 / 2  

0"22 = ~733 cosec  2 0 = - 4 (9a )  I~4Wy 3/2 

0-~h0-ab = 32(27a2)-l~4z-4/3 W2 y-3 

where 

W = - 6 a z  4/3 q- 4a 2~2z 1 /3  - -  b2z-1/3 

We notice that the pressure and density are infinite only on the hypersurface 
z = 0, which represents an expanding or contracting 2-sphere. However, there 
is another hypersurface, namely Y = 0, on which the kinematical quantities 
are singular. There is a zero-pressure surface 7b2z-2/3+ 16az+2Oabrt = 0, 
which suggests the possibility of using the solution as a finite spherical 
interior for a vacuum (Schwarzschild) exterior. 
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Comoving diagonalized coordinates (denoted here by r, t) require the 
solution of (2.15) and (2.16). A possible set is 

t : z  

with r satisfying the differential equation 

Or O r = o  
2 a ~ - ~ -  bz -2/30rl 

As in the case of  metric A, we have not been able to write the solution 
explicitly in comoving coordinates. 

5. C O N C L U S I O N  

We have examined in detail two solutions of  Einstein's equations for 
a perfect fluid which were obtained by the use of  noncomoving coordinates. 
Unlike the great majority of  spherically symmetric perfect fluid solutions 
obtained in comoving coordinates, the ones considered here have shear. 
This suggests that noncomoving coordinates may be useful in the study of 
relativistic perfect fluid space-times. 
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